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ScanSAR-Stripmap interferometry using Envisat ASAR data
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Abstract: This study analyzes the main phase contributions of ScanSAR-Stripmap interferometry and further points out the

special component caused by unsynchronized echoes, which is then verified in the experiment. The whole process of ScanSAR-

Stripmap interferometry has been proposed and implemented with the help of relating modules of the Repeat Orbit Interferometry

Package (ROI PAC) developed by Jet Propulsion Laboratory (JPL). Coregistration and improvement of coherence are solved

emphatically. Finally, ScanSAR-Stripmap interferometry is realized using Envisat ASAR data and the results are compared with

those of traditional Stripmap-Stripmap interferometry for validation.
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1 INTRODUCTION

ScanSAR is a special operation mode of SAR which can greatly
extend the overall swath width by cyclically scanning several subs-
waths, compared with the conventional stripmap mode. However,
it was not until the launch of SIR-C in 1994 that ScanSAR has
been in operation. The remarkable potential of ScanSAR has been
shown in the Shuttle Radar Topography Mission (SRTM) which
has mapped the global DEM in only 11 days (JPL, 2000). Most of
the recently launched spaceborne SAR instruments can operate in
ScanSAR mode with considerable amount of acquisitions. Scan-
SAR interferometry, which has been preliminarily realized by
a Chinese researcher (Jia, 2009), is different from the traditional
stripmap interferometry because of its distinct signal characteristics
and operation mode. Further more, interferometry using both Scan-
SAR and stripmap data which is the so called ScanSAR-Stripmap
interferometry, is somewhat more difficult. No successful attempt
of ScanSAR-Stripmap interferometry by Chinese researcher has
been found, despite several examples abroad (Bamler, et al.,
1999; Guarnieri & Pasquali, 2003; Guarnieri, et al., 2003; Guc-
cione, 2006; Ortiz & Zebker, 2007). However, ScanSAR-Stripmap
interferometry breaks the limit of single mode interferometry and
therefore is meaningful. Suppose that there are 4 acquisitions com-
prised of 2 stripmap ones and 2 ScanSAR ones. If only single mode
interferometry (Stripmap-Stripmap, ScanSAR-ScanSAR) is avail-
able, then we only have two choices. But if ScanSAR-Stripmap

interferometry is possible, there will be 6 choices totally. The more
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the acquisitions we have, the more additional choices there will be.
Therefore, ScanSAR-Stripmap interferometry will highly increase
the number of the available interferometric combianations for
current SAR dataset archives. It will be of great importance for
disaster monitoring. For example, we can only get stripmap data
before the earthquake, while the post earthquake data is ScanSAR
data. It is obvious that we can not get the deformation caused by
the earthquake only using single mode interferometry. However,
ScanSAR-Stripmap interferometry can make up for the pity.

The Envisat ASAR instrument launched in 2002 can operate
in 5 modes, among which the Wide Swath (WS) and the Global
Monitoring (GM) mode are ScanSAR mode. In this paper, we use
Envisat ASAR WS and IM (Image mode, stripmap mode) data to
study ScanSAR-Stripmap interferometry and show the results.

2 OPERATION MODE AND SIGNAL CHARA-
CTERISTICS OF SCANSAR

In conventional stripmap mode, SAR transmits and receives the
pulse of a single beam with a constant pulse repetition frequency
(PRF) to image the Earth. ScanSAR, however, scans several subs-
waths by cyclically switching its antenna elevation angle in order
to greatly extend the range width. For a single subswath, ScanSAR
operates almost in the same way as stripmap mode, except that
ScanSAR transmits pulse sequences with cyclical intervals in which
SAR collects echoes of the other subswaths. The pulse sequence is
called burst. The bursts and their gaps constitute a subswath. We
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take ScanSAR mode composed of 2 subswaths as an example as
shown in Fig. 1. At location A, SAR transmits and receives pulse
sequence (a burst) of subswath 1. When it arrives at location B, it
switches its antenna elevation angle to collect echoes (a burst) of
subswath 2. Then it switches back to subswath 1 again. The above
steps are repeated continuously to complete an acquisition. In this
way, ScanSAR can achieve very large range width. However, the

azimuth resolution is greatly reduced.

Fig. 1 Operation mode of ScanSAR

Based on the analysis of ScanSAR operation, the azimuth signal
of a subswath is shown in Fig. 2. As we can see from this figure,
the azimuth (slow time) signal is different from that of stripmap
mode. That is, the azimuth is spaced by cyclical gaps which do not
exist in stripmap mode. In range direction, however, there is not
anything different from stripmap mode.
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Fig.2 Azimuth signal of a ScanSAR subswath

To solve the conflict between range resolution and pulse length,
the signal transmitted by SAR is linear frequency-modulated (FM).
The received signal contains the radar carrier which is removed
before the sampling by a quadrature demodulation process. After
that, the signal from a single point target can be represented by the
complex signal (Cumming & Wong, 2005)

s,@,n)=A,w.(t—2R(1)/c)w,(n—1,)x
exp{-j4nR(n)/ 2}exp {jnK,_ (2R (n)/c)z} )

where 7 and 7 are fast and slow time, respectively.

The received echoes are then focused in order to be adapted to
interferometry. Take range Doppler algorithm (RDA) as an exam-
ple, after the so-called range compression, range cell migration cor-
rection (RCMC) and azimuth compression, the single look complex
(SLC) can be expressed as

Sstripmap (Ta ’7) = Aopr(T _ZR() /C )pa (’7) X
exp{—j4nR, /A Yexp {j2nf} )
For ScanSAR, considering the burst gaps, the received signal of
a subswath is

s (T, 1) = 4w, (t=2R(n)/ )w, (1 =1, )w, (1) %
exp {—j4TER(17)//1}exp {jTEK, (T—2R(17)/c)2 } 3)

As we can see from Eq. (3), comparing with Eq. (1), the re-
ceived signal of ScanSAR can be taken as stripmap signal imposed
with a window wy(#) , which is also what Fig. 2 tries to depict.

There already exist many algorithms which can be used to focus
Eq. (3) such as full-aperture algorithm, the modified SPECAN al-
gorithm and the ECS algorithm. To make full use of the availability
of the existing resources, full aperture algorithm is adopted to focus
the raw data, which can keep all the phase information we need. It
requires that the burst gaps should be padded with zeros. Then the
zero-padded signal can be put into the conventional focusing algo-
rithm and the resultant SLC can be expressed as

Sseansar T 517) = AOBBBpBapr (r-2R, /e)x
exp{—j4mR, /A }sinc(B,n) 111 (B,n)x
exp{=/2 7K g1} eXpLj 20,1} “

3 THEORETICAL BASIS OF SCANSAR-STRIPMAP
INTERFEROMETRY

Suppose that the master image is stripmap mode data, while the
slave is ScanSAR mode data. Then the slave image can be described as
Sseansar (T5 1) & AoBEBpBap,~( 7=2(R, +AR)/c)x
exp{—j4n(R, +AR)/A}x
sinc(B,n)Il(B,n)exp{—j2nK, s nix

exp{/2m,.1} ®)
After coregistration, it is written as

Sseansar (Ts1) = 4yB,B,B,p,(7=2R,/ c)x
exp{—j4m(R,+AR)/ 2}x

sinc(B,n)I1 (B,n)x
exp{—j27K 1,11} exp /201, 1} (6)
The interferogram is
Interferogram(t,n) = Stripmap S‘*ScauSAR (7

The phase of the interferogram is composed of the following
three components

exp{j4nAR/ A} (8)
exp{j2n( 1., = f.)1} ©)
exp{—j2nK 1,1} (10)

where 7, is the time shift between the burst center and the zero Dop-
pler centroid, K is the azimuth FM rate, # is slow time. Eq. (8) and
Eq. (9), which also exist in stripmap interferometry, are caused by the
topography and the difference between the Doppler centroid of the
interferometric pair, respectively. Eq. (10) is caused by the pattern of
acquiring data in ScanSAR mode. It contaminates the interferometric
phase and reduces the coherence of the interferometric pair. It is the
key problem that will be dealt with in this paper.

There are two solutions for Eq. (10), one of which is to filter
the stripmap data by a low-pass filter (Guccione, 2006). The other
one is to remove some of the echoes of stripmap mode, according
to the burst gaps of ScanSAR mode. Therefore, the resultant SLC
of stripmap mode will also have phase like Eq. (10), which will be
removed automatically in interferometry along with phase Eq. (10)



698 Journal of Remote Sensing

#ERER 2011, 15(4)

in ScanSAR mode. The latter approach is chosen as our processing
strategy to implement ScanSAR-Stripmap interferometry.

4 KEY TECHNOLOGIES OF SCANSAR-STRIPMAP
INTERFEROMETRY

In order to realize ScanSAR-Stripmap interferometry, we have
modified the ROI_PAC (Repeat Orbit Interferometry Package) (Rosen,
et al., 2004) software developed by Jet Propulsion Laboratory.

ROI PAC is a repeat orbit interferometric package. The source
code of ROI_PAC has been freely available to the INSAR commu-
nity since 2000. Current version of ROI PAC is V3.0.1. ROl PAC
implements its fundamental algorithms in C and Fortran 90 and
drives each executable module with a Perl control script, running
on SGI, Sun, Mac OS X, and Linux platforms (Rosen & Fielding,
2009). It is designed to only implement stripmap interferometry.

Based on ROI_PAC, the ScanSAR-Stripmap interferometry we
proposed includes the following key technologies: (1) Unification
of the PRF of the two datasets. (2) Coregistration. (3) Removal of

the unsynchronized echoes. (4) Extraction of the overlapped area.

4.1 Unification of the PRF of the two datasets

The interferometric processing requires that the interferometric
pair shares the same PRF and range resampling frequency. Al-
though the two datasets are in the same swath, they have different
PRF. Therefore, one of the datasets should be resampled in azi-
muth. Considering the higher PRF of ScanSAR, the stripmap data

is resampled in order to keep in accordance with ScanSAR.

A phase-preserving interpolation kernel should be used in resa-
mpling because interferometry requires keeping phase information.
We use sinc function because of its excellent performance. How-
ever, the length of sinc kernel is infinite, indicating that we have to
adopt a truncated sinc kernel. In implementation, we use a 16-point
sinc kernel since improvement is marginal when a kernel length
longer than 16 points is used (Cumming & Wong, 2005). On the
other hand, the increase in the length of kernel will also lead to ad-
ditional calculation.

4.2 Coregistration

Although correlation is used to coregister slave image to master
image in ROI_PAC, we found that it did not work well for Scan-
SAR-Stripmap interferometry. Therefore, we propose the method
of three-time iteration coregistration based on the conventional
coregistration strategy.

First, we use satellite ephemeris to calculate the azimuth offset
that will be the basis of removing the unsynchronized echoes. The
slave image is then coregistered to the master image according to
the azimuth offset. Echoes corresponding to the burst gaps of Scan-
SAR are replaced with zeros. This manipulation can roughly keep
the synchronization of the two datasets and therefore will improve the
coherence of the interferometric pair. In addition, the azimuth resolu-
tion of stripmap data will be the same as that of ScanSAR, as well as
some other signal characteristics. In a word, the precision of this azi-
muth offset can actually meet the need of coregistration in this step.

L e 1
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| Decode ScanSAR raw data, Decode stripmap I
| obtain burst pattern raw data |
| |
| - Unify PRF > |
| 7| ofrawdata | |
| ¢ |
! Calculate azimuth offset !
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| |
| Remove incoheret echoes |
of stripmap data
! ¢ I Post processing
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! Focus raw data ! No
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| ¢ | orbital fringe?
! Obtain precise azimuth offset |
| by conventional coregistration 1| g
©
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| interferometry azimuth offset 1 % A
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Fig. 3 Flow chart of ScanSAR-Stripmap differential interferometry
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The ScanSAR and resultant stripmap raw data is then focused
and coregistered using the correlation method. In this step, we will
get a better azimuth offset which is used to replace the unsynchro-
nized echoes of stripmap data in the same way as above mentioned
method. Finally, the newly processed stripmap raw data is focused
and coregistered again. After that, the coregistration is completed.

4.3 Removal of the unsynchronized echoes

In section 3, we have demonstrated that the effect of Eq. (10)
should be properly removed in ScanSAR-Stripmap interferometry.
Therefore, if the line in stripmap data is zero-line or echo-line, the
corresponding line in ScanSAR data should be the same, which is
also called synchronization. Otherwise, the coherence of the inter-
ferometric pair will be reduced and the interferogram will be con-
taminated by the needless phase. However, there is no need to seek
very precise synchronization. Actually, we have properly removed
the unsynchronized echoes of stripmap data in the second step of
coregistration described in section 4.2, meaning that the synchroni-

zation of the interferometric pair is assured.

4.4 Extraction of the overlap area

In order to save computation load and improve the precision of
the processing, only the overlap area of the interferometric pair is
extracted for further processing. Actually, the area in ScanSAR data
corresponding to the stripmap data is extracted because of its much
larger coverage.

The key processing flow is summarized in the dashed line frame
of Fig. 3. After that, the results can be applied to DEM generation
or surface displacement detection.

5 SCANSAR-STRIPMAP INTERFEROMETRY
EXPERIMENT AND ITS ANALYSIS

There are two experiments in this study: (1) Verification of the
effect of Eq. (10) on coherence. (2) ScanSAR-Stripmap interferom-
etry. We choose the Envisat ASAR WS (ScanSAR) and IM (Strip-

map) data of Bam, Iran earthquake provided by the ESA-MOST
Dragon Programme as the experimental data which is shown in
Table 1.

Table 1 Experimental data

Interferometric Combination Date Track

. Master 2003-09-24 120

ScanSAR-Stripmap Slave 2004-02-11 120

Stinman.Sii Master 2003-12-03 120
pmap-Stripma

pmap-Stripmap Slave 2004-02-11 120

5.1 Verification of the effect of Eq. (10) on coherence

Two schemes are proposed to verify the effect of Eq. (10) on
coherence. In scheme 1, the stripmap data without incoherent ech-
oes removal is used for interferometry, while the stripmap data with
incoherent echoes removal is used in scheme 2. A 5x5 window is
employed to calculate the interferometric coherence. The coherence
maps in the two schemes are shown in Fig. 4 which indicates that
the coherence of the interferometric pair is highly improved after
incoherent echoes removal. The mean coherence of scheme 2 is
0.49, 2.2 times of that in scheme 1, whose mean coherence is 2.2.
Now the effect of (10) is clearly verified.

5.2 ScanSAR-Stripmap interferometry

The key technologies proposed in section 4 are applied to the
repeat orbit differential interferometry. The overall processing flow
is shown in Fig. 3. The results are compared with those of conven-
tional stripmap interferometry (Stripmap-Stripmap).

The coherence map of ScanSAR-Stripmap interferometry is
shown in Fig. 4 (b). Compared to the coherence of stripmap-strip-
map interferometry shown in Fig. 4 (c), it is a little bit lower. The
mean coherence of Fig. 4 (b) and (c) is 0.49 and 0.69, respectively.
This is reasonable with following speculations. First, the time span
of the ScanSAR-Stripmap interferometric pair is longer, during
which there may be climatic and seasonal factors that reduce
coherence. Second, errors of synchronization will affect the coher-
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Fig. 4 Coherence maps and their histograms.
(a) Coherence map of ScanSAR-Stripmap interferometry without incoherent echoes removal; (b) Coherence map of ScanSAR-Stripmap
interferometry with incoherent echoes removal; (c) Coherence map of Stripmap-Stripmap interferometry
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ence of ScanSAR-Stripmap interferometry. Third, the much coarser
azimuth resolution of ScanSAR-Stripmap interferometry may also
be the cause of low coherence. In addition, different systematic pa-
rameters used in the acquisitions of the two modes may be another
factor that affects coherence.

The differential interferograms of ScanSAR-Stripmap and
Stripmap-Stripmap interferometry are shown in Fig. 5 (a) and (b).
Generally, they both show a similar pattern. The interferometric
results need further quantitative comparison which is illustrated in
Fig. 6. The maximum and minimum LOS deformations of Scan-
SAR-Stripmap interferometry are 30.7 cm and - 17.4 cm. The val-

ues of Stripmap-Stripmap interferometry are 30.5 cm and - 17.3
cm. Local difference between Fig. 6 (a) and (b) in the lower left
corner is caused by the masking of pixels with low coherence in
(a). The result of Stripmap-Stripmap interferometry shown in Fig.
6 (b) can be treated as the real deformation. Then the fact that Fig.
6 (a) and (b) are in good agreement which suggests that the method
proposed in this paper is workable.

Additionally, the low azimuth resolution of ScanSAR together
with the low PRF of stripmap mode in this experiment leads to a
resolution of ScanSAR-Stripmap interferometry even coarser than
that of ScanSAR interferometry.

_x n[RAD]

(@

- n[RAD]

(b)

Fig. 5 Comparison of ScanSAR-Stripmap and Stripmap-Stripmap differential interferograms (wrapped phase)
(a) ScanSAR-Stripmap; (b) Stripmap-Stripmap
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Fig. 6 Comparison of 3D surface view of displacement maps derived by ScanSAR-Stripmap and
Stripmap-Stripmap differential interferometry (White pixels are invalid because of low coherence)
(a) ScanSAR-Stripmap; (b) Stripmap-Stripmap
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6 CONCLUSION

First, we have proposed some key technologies based ROI
PAC which are then adapted to ScanSAR-Stripmap interferometry,
including unification of the PRF of the two datasets, coregistration,
removal of the unsynchronized echoes and so on. These technolo-
gies are applied to the differential interferometry of Iran, Bam
earthquake using Envisat ASAR data. Comparison of the results of
ScanSAR-Stripmap and Stripmap-Stripmap interferometry shows
that they are in good agreement with each other, suggesting that the
method proposed in this paper is reliable.

Second, we have analyzed the main phase contributions of
ScanSAR-Stripmap interferometry and further points out the spe-
cial component that is verified with an experiment.

Third, we have developed a set of programs for ScanSAR-
Stripmap interferometry based on ROI_PAC.

Acknowledgements: We thank JPL for its freely available
open source interferometric package ROI_PAC.
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