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Abstract: The mixels in the hypersepectral images not only influence the accuracy of target detection and classification, but

also greatly hinder the development of quantitative remote sensing. The typical endmember extraction algorithms now available

are analyzed and summarized. These algorithms can be classified into two types based on the hypothesis of the existence of the

pure pixels: endmember identification algorithm and endmember generation algorithm. Six endmember extraction algorithms, in-
cluding N-FINDR, VCA, SGA, OSP, ICE and MVC-NMF, are introduced and compared using experimental data, which further

show their advantages and disadvantages. With results of various methods, the future perspective is proposed for further study.
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1 INTRODUCTION

The mixels exist abroadly in the hyperspectral images, and
the mixed pixel decomposition is the effective approach to solve
this problem to realize the sub-pixel classification (Kumar, et al.,
2008). The Linear Spectral Mixture Model (LSMM) is one of
the Mixel Decomposition Model(MPD) that been applied most
thoroughly and extensively. Its main procedure includes Dimen-
sion Reduction(DR), Endmember Extraction(EE) and Abundance
Estimation(AE), in which the EE is the linchpin for the MPD.
Based on the hypothesis of the existence of the pure pixels, the
Endmember Extraction Algorithms(EEAs) can be categorized into
two classes(Plaza, et al., 2005) and they are Endmember Identifica-
tion Algorithm(EIA) and Endmember Generation Algorithm(EGA).
The EIA extracts pure pixels directly from the data. It is based on
the pure pixel hypothesis and its theory is relatively simple while
the EGA, on the other hand, generates the endmembers from the
spectral data. For the hypserspectral data, pure pixels are rare due
to the constraint of spatial resolution. Therefore, the precision of
endmembers extracted by the EGA is often higher in the perspec-
tive of theory analysis.

The EIAs based on the LSMM mainly include Pixel Purity
Index(PPI)(Boardman, et al., 1995), N-FINDR (Winter, 1999a,
1999b, 2004), Sequential Maximum Angle Convex Cone(SMACC)
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(Gruninger, et al., 2004), Vertex Component Analysis(VCA)
(Nascimento, et al., 2005; Nascimento, 2006), Simplex Grow-
ing Algorithm(SGA) (Chang, et al., 2006), Orthogonal Subspace
Projection(OSP) (Harsanyi & Chang, 1994), and the Sequential
Projection Algorithm(SPA)(Zhang, et al., 2008). The EGAs mainly
include Minimum Volume Transform(MVT)(Craig, et al., 1994),
Convex Cone Analysis(CCA)(Ifarraguerri & Chang, 1999), Itera-
tive Error Analysi(IEA)(Neville, et al., 1999), ORASIS(Bowles, et
al., 1995), Iterated Constrained Endmember(ICE)(Berman, ef al.,
2003, 2004), and the Minimum Volume Constraint Nonnegative
Matrix Factorization(MVC-NMF)(Miao, et al., 2007). In this study,
the four EIAs(N-FINDR, VCA, SGA, OSP) and two EGAs(ICE,
MVC-NMF) are analyzed and compared for precision of the ex-
tracted endmembers and the efficiency of the algorithms using the
experimental data These analysis and conclusions will build up
bases for the further research, and can provide references for the
other researchers.

2 ENDMEMBER IDENTIFICATION ALGORITHM

The LSMM assumes that the spectral response in each pixel
is a linear combination of endmember spectras, with the weights
being proportions. Let x denotes the / vector for one pixel in the

image, / is the number of the bands, the mathematical formulation
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of LSMM is

»

x=) As +e=As+e (1)

i=1
where p is the number of the endmembers, A is the endmember
matrix or source matrix, s is the abundance vector for the pixel, A,
and s, is the ith endmember and mixing proportion, respectively,
and ¢ represents the error term. Fig.1 is the sketch map for the
LSMM. There are two constraints for the abundance vector in the
LSMM: Abundance Non-negativity Constraint(ANC, s,=0, i=1,

P

2--+, p) and Abundance Sum-to-one Constraint(ASC, Zs,, =10.
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Fig. 1 The sketch map of LSMM

2.1 N-FINDR

N-FINDR algorithm searches the pure pixel set in the data based
on the convex geometry. Its main theory can be described as fol-
lows. In the n-dimensional space, the simplex volume composed of
the pure pixels is larger than any other ones composed of any other
pixels, which is illustrated in the Fig.2. The algorithm finds the set
of pixels with the largest possible volume by “inflating” a simplex
inside the data, and it begins with a random set of vectors, in order
to refine the estimates of the endmembers. Every pixel in the image
must be evaluated as to its likelihood of being a pure or nearly pure
pixel. To achieve this, the volume must be calculated with each
pixel in a place of each endmember. A trial volume is calculated for
every pixel in each endmember position by replacing that endmem-
ber and finding the volume. If the replacement results in an increase
in volume, the pixel then replaces the endmember. This procedure
is repeated until there are no more replacements of endmembers.
Winter(1999a, 1999b) used this algorithm to extract endmembers
successfully for the synthetic data, and justified that the N-FINDR
is robust for the imperfect data. These results are demonstrated by
the endmembers extracted from the AVIRIS Cuprite data set being
similar with the reference data, and the abundance maps being con-
sistent with the published mineral maps. Winter(2004) explained
the N-FINDR algorithm extensively, and proved the validity of the
algorithm from the theory analysis. Their analysis further justified
that the algorithm could also converge the imperfect data.

The main procedures of the N-FINDR algorithm are as follows:

(1)Estimate or assign the number of endmembers p within the
image data, and use the MNF(Minimum Noise Fraction) to reduce
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Endmember ¢

Endmember b

Y

Band 1

Fig. 2 Simplex and the endmember positions in the 2-D feature space

the dimensionality to be p-1.

(2)Select the pixels randomly as the initial endmembers, and
calculate the simplex volume V; that composed of these initial end-
members. The mathematical definition of the volume of a simplex
formed by the set of endmember estimates is

V(E) =

- 1)!abS(I £l )

{ 111 }

E= 3
A Ay Ap

where A, is the p—1 dimensional column vector for the i" endmem-
ber.

(3)Evaluate an image pixel by replacing one pixel in the repre-
sent endmember set with the image pixel P, producing a “trial en-
emember” set and calculate the new simplex volume V,. If V>V,
replace the candidate enemember with P,.

(4)Replace the other candidate enemembers with the pixel P,
and execute the same procedure as (3).

(5)Execute the procedures (3) and (4) for all the other pixels re-
peatedly The simplex volume composed of the result endmembers
is the largest one, and its vertexes correspond to the endmembers.

Winter(1999a, 1999b) indicated that N-FINDR will encounter
difficulties in certain circumstances. It is feasible for a real image
to contain no pure or nearly pure pixels. In this case, one of the
basic assumptions of the algorithms has been violated. It finds the
least mixed pixel that most closely approximates the endmember.
Furthermore, if there are mixed pixels with a higher brightness than
the unmixed pixels, the algorithm will select them as endmembers.

There are some shortcomings for the N-FINDR algorithm: (1)it
does not have the rule or algorithm to estimate the number of end-
members; (2)it uses the random selection of vectors within the data
to be the initial endmember set, which may result in time consum-
ing iterations; (3)because of the random selection of endmembers,
its endmember extraction results are always not repeatable; (4)
it needs dimensionality reduction procedure, that can lead to er-
rors. Furthermore, different dimensionality reduction algorithms
will result in different endmember extraction results. Plaza(2005)
used the VD method to estimate the number of endmembers, and
initialized the endmember set with the IEA results. Results indicate
that it can accelerate the algorithm’ convergence and contribute
to more stable results. Plaza and Chang(2006) studied the impact
of the initialization methods(ATGP(Automatic Target Generation
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Process), UFCLS(Unsupervised Fully Constrained Least Squares),
IEA(Iterative Error Analysis), Maximin-Distance Algorithm) for
the N-FINDR results, the experiments validated that the use of the
initialization methods can both speed up the convergence and make
some initial endmember in the ultimate endmember extraction re-
sults. Within the initialization methods, the ATGP can get the best
results. A recent study (Zhang, et al., 2009) that used the ATGP
algorithm to initialize the N-FINDR, and replaced the volume cal-
culation with the distance one, also indicated these improvements
can speed up the algorithm’s convergence.

2.2 VCA algorithm

VCA algorithm extracts the endmembers based on the convex
geometry theory under the assumption of the pure pixel’s existence.
It considers the variations due to the surface topography, and mod-
els the data using a positive cone, whose projection onto a properly
chosen hyperplane is a simplex with vertices being the endmem-
bers. After projecting the data onto the selected hyperplane, VCA
projects all image pixels to a random direction and uses the pixel
with the largest projection as the first endmember. The other end-
members are identified by iteratively projecting data onto a direc-
tion orthogonal to the subspace spanned by the endmembers al-
ready determined. The new endmember is then selected as the pixel
corresponding to the extreme projection.

Assuming the linear mixing scenario, each pixel vector is given
by

x=Ayste 4)
where y is a scale factor modeling the illuminationvariability due to
surface topography. Owning to physical constraints of abundance
vector, s€A,, A, is a simplex. Each pixel can be viewed as a vector
in an /-dimensional Euclidean space, where each channel is as-

signed to one axis of space. S, = {x €R' :x=As,s¢e Ap} is also a
simplex. C, = {x eR :x=Ays,s € A,],}’ZO} is a conex cone, OW-
ing to the scale factor y.

The projective projection of convex cone C, onto a properly
chosen hyperplane is a simplex with vertices corresponding to the
vertices of the simplex S,. This is illustrated in Fig.3. The simplex
S, = {J’E R':y= x/(xyrﬂ ), r GCF} is the projective projection of
the convex cone C, onto the plane x'u=1, where the choice of u en-
sures that there are no observed vectors orthogonal to it.

After identifying §,, the VCA algorithm iteratively projects
data onto a direction orthogonal to the subspace spanned by the
endmembers already derternined. The new endmember signature
corresponds to the extreme of the projection. Fig.3 shows the two
iterations of the VCA algorithm applied to the simplex S, defined
by the mixture of two endmembers. In the first iteration, data is
projected onto the first direction f;. The extreme of the projection
corresponds to endmember m,,. In the next iteration, endmember m,
is found by projecting data onto direction f;, which is orthogonal
to m,. The algorithm iterates until the number of endmembers is
exhausted.

Nascimento (2005, 2006) compared the VCA with PPI and N-
FINDR algorithms by several experiments using simulated data.
Conclusions are achieved including that VCA performs better than
PPI and better than or similarly to N-FINDR, and secondly, VCA
has the lowest computation complexity amone these three algo-
rithms, especially for large dataset.

Convex cone C,(y#1)
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Fig. 3 Illustration of the VCA Algorithm

2.3 SGA

SGA is an improvement of N-FINDR algorithm. It finds a de-
sired p-1 dimensional simplex with the largest volume by gradually
growing simplexes vertex by vertex. In other words, it makes an
attempt to directly find a p-vertex simplex with the largest volumes
by increasing vertices from 2 to p. Its main procedures can be de-
scribed in detail as follows.

(1)Initialization: use the VD to estimate the number of endmem-
bers.

(2)Randomly generate a target pixel, denoted by ¢z, and find a
pixel A, that yields the maximum of absolute determinant of the

over all sample vectors 7, i.e.,

11
A= arg{max [ det |: :| :|} 5)
r t r

where PCA or MNF is required to reduce the original data di-

. 1
matrix ‘ det
t

mensionality to the dimension 2 to find the maximum, set n=1,
where 7 is the number of endmembers that have been extracted(the
generation of the first endmember pixel A4, is determined by the
randomly generately target pixel 7. Chang, et al. (2006) shows that
the generated A, is always a pixel which has either a maximum or
a minimum value in the first component of dimensionality reduc-
tion transform, and it eventually becomes one of the final generated
endmembers).

(3) At n=1 and for each sample vector, calculate V(4,, 4,, -+

A,, r) defined by
1111
’de{AA 4 }
A p
1472 n (6)
n!

A DR algorithm such as PCA or MNF is required to reduce the
original data dimensionality / to be the dimension n.

(4)Find the (n+1)th endmember that yields the maximum of
=arg{max[V (4,4, -+, A4,,r)]}
(S)Stoppi;g rule: if n<p, then n=n+1 and go step (2). Otherwise,

i

V(A, A, A,r)=

A

n+l
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the final set of (4, A,,+-, A,) is the desired endmember set.

24 OSP

In 1994, Harsanyi(1994) firstly used the OSP to detect the de-
sired object. Its virtue is that it can extract interested signatures
after aparting gradually the spectras. Initially, OSP needs the prior
information of the end-members. After some improvements(Wu, et
al., 2004; Chang, 2003;Chang, et al., 2001), it has been used as an
endmember extraction algorithm.

The main procedures of OSP to extract the endmembers are as
follows:

(1)According to the convex geometry, get the first candidate
endmember using the maximum spectral Euclidian distance as

Eq. (7). It is the brightest pixel on the image.
d = arglmax(x/ x,)] ™

(2) Judge the candidate endmember whether it is a noise vector,
if is, eliminate the noise pixel.

Wu,et al. (2004) designed a noise judgement method that first
take the candidate endmember pixel as the window center, and then
search for the pixels which have the similar spectral feature with
the candidate endmember in the window. If the number of the simi-
lar pixels is larger than a threshold, assign the center pixel as an
endmember, other wise, it is a noise pixel.

(3)Eliminate the effects of the extracted endmembers for the
spectral data, and generate a new spectral data. The main theory of
eliminating the effects of the extracted endmembers of OSP algo-
rithm is shown below.

Decompose the matrix A into two parts, A=[D, U], where
D=[d,d, ...
endmembers(desired signatures), w is the number of the extracted

,d,] is endmember matrix constructed by the extracted

endmembers, and U is the endmember matrix constrcted by the re-
maining endmembers(undesired signatures). At the same time, the
abundance vector s is decomposed into two corresponding parts,
5=[$p, 5,]", then the Eq. (1) can be written as

x=Ds,+Us;t¢ 8)
where P,, is the orthogonal projection matrix of D.
P,=I-D(D'D)'D" 9)

where 7 is the identity matrix, then the matrix P, can be calculated.
The new hyperspectral image can be generated using P, and the
image matrix.
P,x=P,Us, (10)

Spectras in the new generated hyperspectral image do not con-
tain the information of the extracted endmember matrix D.

(4)Consider the stopping rules (e.g. if the number of the
endmembers reaches the given number, efc.), if they are met,
stop the iteration, output the end-member results. Otherwise,
generate the new hyperspectral convex simplex, and iterate the
procedures(1)—(3).

3 ENDMEMBER GENERATION ALGORITHM
3.1 ICE

The ICE algorithm has been patented that combines the con-
vex geometry model with suitable assumptions about errors in the
model and appropriates statistical procedures to extract more de-
tailed information from hyperspectral image than that of MVT, and

N-FINDR algorithms(Berman, et al., 2003).

The goals of ICE are as follows:

(DIt does not assume that all the endmembers have pure pixel
representation in the scene.

(2)It has some resistances to the presence of noises.

(3)It provides a measure for assessing goodness of fit, and in
particular for estimating the number of end-members in the scene.

ICE algorithm’s main procedures and theory can be found in
Berman (2003, 2004).

Spectral unmixing can acuqire the appropriate end-members
and abundances according to minimizing the Residual Sum of
Squares(RSS) indicated by Eq. (11).

N r P
RSS =206~ 2, 8,4 (6= 2 Su ) (an
=1 =1 k=1

ICE uses an alternative representation of RSS as Eq.(12)

RSS=i(x/.—SA/)T(x,—SA/) (12)

J=1

where x; denotes the N observations in the /™ MNF band. A;is the p-
vector of endmember values in the /" MNF band, and S is the Nxp
matrix of proportions of the p endmembers for all the image pixels. It
can be shown that the minimizer of Eq.(11) or Eq.(12) is any p-simplex
in the hyperplane spanned by the first p—1 MNF bands, which totally
encloses the data points projected onto the hyperplane.

In order to constrain the size of the simplex somehow while
keep faithful to the model. One way of doing this is by adding a
term to Eq.(11) or Eq.(12) which is proportional to a measure of the
size of the simplex. ICE uses the Sum of Squared Distance(SSD)
between all the simplex vertices, which is computationally cheaper.

pl p

SSD =2 2. (4, ~4) (4, - 4) (13)
k=1 I=k+1
Berman(2003) shows that SSD can be written as
SSD=p(p-1)V (14)

where V is the sum fo the variances of the simplex vertices.
The objective function of ICE is

RSS, ., =(1-u)RSS/N+uV (15)
where u is a small “tradeoff” of “regularization” parameter in (0, 1).
Eq. (15) needs to be minimized over both the p endmembers and
the p proportions for each pixel. One solution is to minimize (15)
iteratively: given the endmember estimates, estimate the proportion
matrix S, this just involve the separate LS minimization of each of
the N terms in Eq.(12), subject to the abundance constraints. Then,
with given §, calculate each 4; using the following equation

A, =1{8"S+ 21, -11"/ p)} 87x, (16)

where 2=Nu/[(p—1)(1-x)]. The algorithm stops iterating when the
ratio of successive values of RSS,, is less than a tolerance.

Berman(2003, 2004) indicates that we can obtain a more exact
endmember number using the implementation of ICE algorithm
time after time, and acquire preferable experimental results for the
AVIRIS data of Oatman areas.

3.2 MVC-NMF

The MVC-NMF algorithm integrates the least squares analy-
sis and the convex geometry model by incorporating a volume
constraint into the NMF formulation. The proposed cost function
consists of two parts. One part measures the approximation error
between the observed data and the reconstructions from the esti-
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mated endmembers and abundances, and the other part consists of
the minimum volume constraint. Miao(2007) treats these two terms
serving as two forces: the external force (minimizing the approxi-
mation error) drives the estimation to move outward of the data
cloud, and the internal force (minimizing the simplex volume) acts
in the opposite direction by forcing the endmembers to be as close
to each other as possible. Its main procedures are described as:

(1)Estimate the number of the endmembers using the VD method.

(2)Construct the following cost function

min f(A,S) = 1 | X —AS || +AJ(A)
2 17)
4,,=0,8, = O,I[T,S =17
where 1,(1,) is a p(n)-dimensional column vector of all 1s, J(4)
is the penalty function, calculating the volume determined by the
estimated endmembers. The regularization parameter A€R is used
to control the tradeoff between the accurate reconstruction and the
volume constraint.

(3)Initialization: Choose randomly p points from the given data
and arrange them as the columns of the initial matrix 4. The value
of § can also be randomly initialized, or initialized to be the zero
matrix.

(4)Stopping conditions: the most commonly used methods are
the maximum iteration number and the error tolerance.

(5)Minimize the objective function with respect to both 4 and
S according to some rules. If the stopping conditions are satisfied,
stop the iteration procedure, or update the matrix 4 and S, search-
ing for the matrixes that can be minimizing the objective function.

4 EXPERIMENTS AND ANALYSIS
4.1 Experimental Objectives

The experiments and analysis were taken to evaluate the six
EEAs using the synthetic and real hyperspectral image data. The
experiments included: (1)comparison of unmixing results with dif-
ferent endmember number; (2)comparison of robustness for noise;
(3)comparison of endmember extraction results with different im-
age size; (4)experiments with real hyperspectral data.

4.2 The Endmember Similarity Metric

To evaluate the experimental results, the Spectral An-
gle Distance(SAD), SID(Spectral Information Divergence),
AAD(Abundance Angle Distance), AID(Abundance Information
Divergence) proposed by Nascimento(2005) are adopted. Eq. (18)
(19) denote the similarity measure, where a imd d are true spectra

and estimated spectra, respectively. P =a/ Za, is the probability
distributing vector. =

.
SAD = cos™ [””] (18)

Ja]-la]

SID = D(a|d)+D(a|a)

D@ld)=Y p, log[@) (19)

i=1

P:a/iai
i=1

i

4.3 Experimental Data Description

The synthetic data was created with the USGS spectral
library(Clark, 2007), and the spectras in this library contained
224 spectral bands covering wavelengths from 0.38—2.5 um with
a spectral resolution of 10 nm(we used 188 bands in the experi-
ments). The synthetic hyperspectral data with sizes of 64x64,
81x81 and 100x100 were created. The abundance of the pixel in
the data was created randomly, and meantime, the abundances of
each pixel fulfill the ANC and ASC. We replaced the pixels whose
maximum abundance was larger than 0.8 with a mixture made up
of all endmembers of equal abundances. To simulate possible errors
and sensor noise, we added zero-mean Gaussian noise to the mix-
ture data.

The real hyperspectral data collected by the AVIRIS sensor over
Cuprite, Nevada, was acquired on the AVIRIS flight of July, 1997.
The size of the subimage was 100x100. AVIRIS instrument covers
the spectral region from 0.4—2.5 ym in 224 bands with a 10 nm
bandwidth and a 20 m spatial resolution. To improve the unmix-
ing performance, we removed the low SNR bands as well as the
water-vapor absorption bands(including bands 1—2, 104—113,
148—167, 221—224) from the original 224-band data cube. There-
fore, a total of 188 bands were used in the experiment. The image
data was converted into the reflectance data using the ATREM (At-
mospheric Removal) (Gao, ef al., 1990) method. The remnant error
was minimized using the EFFORT (Empirical Flat Field Optimized
Reflectance Transform) (Boardman, 1998) method. The false color
image of the subimage is illustrated as Fig.4(R: 7the band, G: 32th
band, B: 62th band).

Fig.4 The experimental subimage of Cuprite area

4.4 Experimental Result and Analysis

The maximum iteration number of ICE* and MVC-NMF algo-
rithms was set to be 150, 4=0.05. They were all initialized using the
VCA and Fully Constrained Least Squares(FCLS)(Hei, et al., 2001)
methods. The unit of SAD in the following tables was degree. The
experiments were based on the Matlab 7.0 platform, using 2.68 GHz
CPU, and 1G EMS memory.

4.4.1 Comparison of unmixing results with different endmember
number

The objective of this part is to compare the six EEAs with dif-
ferent endmembers number.. In the experiments, the synthetic im-
age size is 64x64, the SNR of the noise in the mixed data is 30 db.

*Berman(2009) indicated that only using the key pixels can improve the ICE algorithm’s efficiency, this method can also be used for the other five EEAs,

so the experiments are all not using this method
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The experimental results with the endmembers’ number is 4, 5, 6,
and 7, respectively, are listed in Table 1 and Table 2. The 2-D pro-
jection of the simulated data, true endmembers and the end-mem-
bers with the six EEAs are plotted in Fig.5. From the results, we
can see that the EEA order from the high precision to low precision
is: MVC-NMEF, ICE, VCA, OSP, N-FINDR and SGA, and from
high efficiency to low efficiency is: OSP, VCA, SGA, N-FINDR,
MVC-NMF and ICE.
4.4.2  Robustness comparison for the noise

To illustrate the robustness effect to noise corruptions, the syn-
thetic data is created using four spectras, the Gaussian noise with
SNR = 20 db, 30 db, 40 db and 50 db are added into the mixed
data. The endmember extraction results and the consuming time us-
ing the six EEAs are listed in Table 3 and Table 4. Fig.6 and Fig.7
illustrates the plot of the true endmembers and extracted endmem-
bers when the noise SNR is 20 db and 40 db, respectively. From
these results, we can see that the algorithms become inappropriate
with decreasing SNR values. The robustness order to the noise
from high to low is: MVC-NMF, ICE, VCA, OSP, N-FINDR and
SGA. From high efficiency to low efficiency, the EEA order is:
OSP, VCA, SGA, N-FINDR, MVC-NMF and ICE when the noise
SNR is different.
4.4.3 Comparison of endmember extraction results with

different image size

The objective of this part is to compare the six EEAs with
the different image sizes. The synthetic data is created using four
spectras, and the SNR of the noise in the mixed data is 30 db. The
experiments results when the image size is 64x64, 81x81, and
100x100 are listed in Table 5 and Table 6. From the results, we can

see that the EEA order from the high precision to low precision
iss MVC-NMF, ICE, VCA, OSP, N-FINDR and SGA. From the
consuming time listed in Table 6, the efficiency order of the EEAs
from high to low is: OSP, VCA, SGA, N-FINDR, MVC-NMF and
ICE.

4.4.4  Experiments with real hyperspectral image data

The estimated number of endmembers for the Cuprite area
AVIRIS image data using VD method is 9. The endmember ex-
traction results can be compared with the spectras in the USGS
library(Winter, 1999a; Nascimento, 2006; Berman, et al., 2003;
Miao, et al., 2007 ). The experimental results are listed in Table
7. From the results, we can see that for the real hyperspectral im-
age data, the EEA order from the high precision to low precision
is: MVC-NMF, ICE, N-FINDR, VCA, SGA and OSP. From the
consuming time listed in Table 8, we can see that the efficiency
order of the EEAs from high to low is: OSP, VCA, SGA, N-FINDR,
MVC-NMF and ICE.

The results are somewhat different between the synthetic image
data and the real hyperspectral data. Specifically, the precision of
the VCA is a little lower than the N-FINDR. This is not contradict-
ed with the results of Nascimento(2006): VCA performs better than
or similarly to N-FINDR, but its efficiency adbantage is obvious.

From the experimental results, we can conclude that EIA has
a high efficiency, but a low precision. The reason is that the EIA
searches for the representative pixels in the image data as the ex-
tracted endmembers, but the EGA generates the endmembers with
some optimization principle. The experimental results are in ac-
cordance with the theory analysis.

Table 1 Experimental results with different endmember number

N-FINDR VCA SGA OSp ICE MVC-NMF
Endmember
number SAD SID SAD SID SAD SID SAD SID SAD SID SAD SID
4 3.908 0.013 3.293 0.011 7.483 0.053 3.908 0.013 5.273 0.033 2.409 0.005
5 12.142 0.066 11.434 0.062 16.111 0.161 13.778 0.079 9.747 0.031 5.450 0.032
6 9.674 0.066 9.235 0.039 13.466 0.111 7.945 0.033 5.308 0.023 1.614 0.002
7 11.034 0.097 11.769 0.089 9.009 0.066 10.881 0.096 6.452 0.033 3.022 0.008
35r
3.0
2.5¢
Table 2 The consuming time of the EEAs with different end- 2.0
member number 15}
L 1.0+
Endmem- Consuming time/s
ber 0.5F
number N-FINDR VCA SGA OSpP ICE MVC-NMF 0
4 4.9 0.5 0.9 04 5422 110.4 05]
-1.0 L ' " : . )
5 4.8 0.5 0.9 0.5 689.9 120.7 1 2 3 4 6 7 9
- data points e ture N-FINDR = VCA
6 5.0 0.5 1.1 0.4 824 174.4 Eocr +SGA ICE + MVC-NMF
7 53 0.5 1.1 0.6 941 273.5

Fig.5 2D projection of the endmember extraction results with the

endmember number of 7
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Table 3 Robustness comparison with different noise SNR
N-FINDR VCA SGA OSP ICE MVC-NMF
SNR/db
SAD SID SAD SID SAD SID SAD SID SAD SID SAD SID
20 7.379 0.037 3.265 0.012 10.996 0.081 7.349 0.035 3.054 0.013 1.019 0.0009
30 3.908 0.013 3.293 0.011 7.483 0.053 3.908 0.013 3.073 0.010 2.409 0.005
40 2.621 0.005 2.808 0.005 4.411 0.011 2.589 0.005 2.071 0.004 0.575 0.0004
50 2910 0.006 3.651 0.012 2.907 0.006 2.697 0.006 2.403 0.010 0.422 0.0001
Table 4 The consuming time of the EEAs with different noise SNR
Consuming time/s
SNR/db
N-FINDR VCA SGA OSP ICE MVC-NMF
20 5.1 0.5 0.8 0.4 563.4 120.1
30 4.9 0.5 0.9 0.4 542.2 110.4
40 4.8 0.9 0.8 0.4 541.6 117.5
50 6.3 0.6 0.8 04 588.5 126.1
09¢ 0.8
0.8} 0.7
0.7}
: . 0.6
S 0.6} = A
E ; g 05 i
8 0.5F Clq:‘)
ﬂé g e 2] 0.4l 1]
0.4F i ‘F
03} 0.3 &.’;
I
02 0.2} F
0.1 n " " ) 0.1 L ]
50 100 150 200 150 200
bands
It
0.8
" g
Q <
§ g 0.6}
L %
2
0.4
0.2
-0.2 ) ) , , 0 ; . . ,
50 100 150 200 0 50 100 150 200
bands bands
() (d
e True Signature  ww v = N-FINDR Endmember + VCA Endmember SGA Endmember

== = == OSP Endmember -

ICE Endmember  w= « == MVC-NMF Endmember

Fig.6 Endmember extraction results with the SNR of 20 db
(a) Endmember—1; (b) Endmember—2; (¢) Endmember—3; (d) Endmember—4
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Fig.7 Endmember extraction results with the SNR of 40 db
(a) Endmember—1; (b) Endmember—2; (c) Endmember—3; (d) Endmember—4
Table 5 Result comparison with different image size
N-FINDR VCA SGA OSp ICE MVC-NMF
Image size/pixel
SAD SID SAD SID SAD SID SAD SID SAD SID SAD SID
64x64 3.908 0.013 3.293 0.011 7.483 0.053 3.908 0.013 3.273 0.012 2.409 0.005
81x81 2.511 0.005 1.286 0.001 2.632 0.006 2.526 0.005 1.147 0.001 0.347 0.0001
100x100 2.136 0.003 0.992 0.001 2.194 0.003 2.101 0.003 0.874 0.001 0.279 0.0001
Table 6 The consuming time of EEAs with different image size
Consuming time/s
Image size/pixel
N-FINDR VCA SGA OSp ICE MVC-NMF
64x64 4.9 0.5 0.9 0.4 542.2 110.4
81x81 83 0.7 1.1 0.5 719 137.7
100x100 12.4 0.8 1.4 0.9 902 347
Table 7 Endmember extraction results for the real hyperspectral image data
N-FINDR VCA SGA OSP ICE MVC-NMF
Image size/pixel
SAD SID SAD SID SAD SID SAD SID SAD SID SAD SID
100x100 6.192 0.021 6.491 0.023 6.991 0.028 8.080 0.031 5.623 0.019 5.025 0.012
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Table 8 The consuming time of the EEAs for the real hyperspectral image data

Consuming time/s

Image size/pixel
N-FINDR VCA

SGA OSP ICE MVC-NMF

100x100 13.1 0.9

1.5 0.9 909 354

5 CONCLUSION

Solving the problem of the mixel can not only realize the high-
precision classification and the sub-pixel object recognization, but
also ensure more adequately use the hyperspectral image. Accord-
ing to the analysis of some classical EEAs, these algorithms can be
classified into two categories: Endmember Identification Algorithm
and Endmember Generation Algorithm. The six endmember extrac-
tion algorithms in common use are summarized and experimented,
the following conclusions can be drawn:

(1)From the perspective of precision for the EEAs, EGAs are
better than the EIAs. With the six algorithms, MVC-NMF extracts
the most accurate endmember results. Although the SGA is an
improvement of N-FINDR, it does not outperform the N-FINDR
algorithm.

(2)From the perspective of efficiency for the EEAs, EIAs are
better than the EGAs, especially for the VCA and OSP. Compared
with N-FINDR, SGA has a higher efficiency.

Each EEA has its shortcomings, and in order to obtain better
mixel decomposition results, it is insufficient to take into account
one class EEA. According to the advantages and disadvantages
for the two kinds of EEAs, some prospects are put forward for the
study of EEA in the next stage:

(D)If the efficiency is weighted in practice, we can use EIA to
extract the endmembers, especially for the VCA and OSP, both of
which have higher efficiency and relative higher precisions. If high
precision of the endmember extraction to be acquired, EGA can be
adopted to implement the endmember extraction, and MVC-NMF
is better than ICE algorithm.

(2)The EGA can be initialized using the EIA results, which can
improve the efficiency of EGA. For example, VCA has a high effi-
ciency and its precision is relative higher than the other EIAs. Thus
it can be used to initialize the EGAs, such as ICE and MVC-NMF,
which can speed up the convergence of the algorithms and the reli-
ability of the endmember extraction results.

(3)Before the mixel decomposion, the initial end-members
can be extracted using the EIAs, then the pixels within the ini-
tial simplex whose vertices are the initial endmembers can be
eliminated(the abundance of these pixels fulfill the ANC and ASC).
Using the EGA for the pixels out of the initial convex hull can im-
prove the efficiency of the algorithms and the reliability of the end-
member extraction results.
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2, B (7)), R —MEikimoT, ErEEBR D
RINSE IR ETT,
d = arg[max(x; x;,)] 7)
(2) 0 e 0 8 o JC A A5 A MRS, AR, B BRI
LB, R
FRUEENQO04) B T — TR Iy i LU
Womoe Gy, TEREHR FIT— R RN N, 7Ei%

ARG TR T4 A, D328 S o e e 1Y
UiIG; AR, MRS

()i R C AR B TGl R E 2, AR Ak
B M

R TR e S G U B U T R R, Y
FEEME R B B AR HURC I 2 . OSPIH R B 42 Uit
TCRZ M A LK LT

(D) AP sy, BlA=[D, U], H
H1D=[d,, d,, -, d,]F/RCHEIBCH TR (RS
MEME R, wA BB, URRHARNG T
TG A (RIAR G ), (R 8t 43k by A 1
PSS, Bls=[sp, so]", MER(1)EER .

x=Ds,tUs;+ e ®)
DWESSHE P -
P,~I-D(D'D)'D’ 9)

K, CHELIHRE, WP, hC Aat, Py/EH T
e L (B0 223 ()5 B (A ik 4 -
Px=P,Us, (10)

BERT, BT EDEE RS G T e s (A P Us P AT
R EmIw JiSI P

(4)F B2 75 16 2 25 R AR (I E 4 iy s T ik 3
FEEECHSE), WA, WESHREE, R REuE IR
PP A NIG; AR, DU AR = G G B
I THEA, PEFRERAE(D—(3)-

3 s AR
3.1 ICE&:%

ICER LT HIE LA, e ™ L5 A 5 % 45
RIHR2E MGG Y MSTHPBRMEE S, T
MEDETE AR PR IUEEMVT . N-FINDRZE i G HE B
FIRE Z A1 (5 S (Berman 5§, 2003).,

ICER M B bR

(W)AMBGE BT A s e IR EAAAESE 5T ;

Q)EA DU

Q)R 7 = Al A P bR i, R
flitt s e o H o

ICEA B0 B 2 B R B U0 T (Berman 5%,
2003, 2004):

T i VR T L3R 2o Fe /MR (1 1) i 2558 07 A
RSS(Residual Squared Sum)FRHER AL AimIC ., B,



TR

1o T PR AR U 7 2 e 5 A 673

RSS = i(xi _isikAk)T(xf _isikAk) (11)
ICEH i FHRSSHY 73 b —FhIE X
RSS = i(xj —54;)" (x, = S4,) (12)

AP, X FRRMNFAS 5 5 B B NS I ALK
HF i, AscHp4Esln g, SERp Mo TN
BICHIN x pEEERERE, 1), (12)F W A28/
F 3G TT LU B Rp— 1 MNF B e i B A
HNBpSR, EEE THEE 2w E A EdE 5.
R T BRI AR B KA, — T g I~ R
PRI/ LB A 212011 . (12)H, ICEf#
THE L R Y B S T R 25 F-J7 FISSD(Sum of

Squared Distance):

sSD=5"S (4 -y -4) 3

S, AA3) LG R
SSD=p(p-1)V (14)
A, VRS T 222 AL
ICER) HbRsRECH :
RSS,..~(1-1)RSS/N+uV (15)

Kb, whtEO, HNB/MTHESE, AS5)FFEMR
Pp U C A ME T Ip N F R TR IME, — R
FERT 7. geumoothitt, R0 HEE
FEARIES, 2, FIHFEERESEIEAX6)ITR A
/I\A‘,»:

A, ={8"S+0(1, -11/p)) ' Sx,  (16)
X, =Nw/[(p-1)(1-0)], ICERF LIRSS, 1 HAl
INF—E BRZEAE RS 1 HE]

Berman(2003, 2004)#&H o] DAF| FH Z KA TICE
SRR AR R WA ) g BRI e, IR
ICEX}Oatmanith [X [ AVIRISE R A 75206, HUfS 148
SIS er

3.2 MVC-NMFE&;%

MVC-NMF# i B AR BRI A ZINMF ok i
AN SR RN T LA A A ok . LR R A AR A bR
BRI Sy, —5 A LI B 5 i o R =
HEHEEZ BRI RIR2E, 53— th e/ MAF R
HA . MiaoFQi(2007) ik PHFE - 1E A WIAN 1. H1 T
(/MBI LR 2 AT 25 SR S MR 8h,
(/MU SRR ZEAH 5 5 1] A i o R ] e i AH B

SR B RARETRE
(ODAHAVDALiHmC Hp.
(M Fbr iR

min f(A, ) = % | X = AS |2 +AJ(A4)

4,208, =0,1IS=1] ()

SR, 1 OBIE R R MRS R, 1|, TR R
B o, JCA) MRS, AN T
WEGHRIRRL, <R

GYUIETL: M 25 B HL s A A
(TR AR VIR . SHEFE @ T USRI B L . Miao
QIQOOTVESI R, HEAEFESHI Ak B

@R RN 2 2 AR 22 B (.

(SRR — 2 M 0 8 R it/ I ) 6
WEA. S, WIS A, R AREE L, 7,
A, S, Mk ol Mb ER BB

4 LI5S
41 ZWHK

SC R P v D T ASE UL BSCHR R L S v O i PR kT
N-FINDR, VCA, SGA, OSP, ICE, MVC-NMF6##
Uity TG4 R VR B 5 A T LB R e, HARSE IS A
. (1)vmocE H AN FIR A SEg0 0T L s (2) X0 MRS i A2
TEMEXT L ) BRI/ INASEIT G SE 30X Ll s (4) BL5E
OGS EUR TR XT LY

42 IEERMBUEEER

R T VM SR 2SR, SR I Nascimento Al
Dias(2005)#& tH 5t 15 92 M 25 (SAD, Spectral Angle
Distance). Y5 BV (SID, Spectral Information
Divergence) X} 6F0 i JCHEHUE -4 T T LB FITEAY o
AR B A =0 (18) FI= (19) iR a, asr
ELSORRE . R, 3PP =al Y a
RS A ] o

TA
SAD = cos™' [aaAJ 18
Jal-Ja] o
SID = D(a | 4)+ D(a | a)
o p.]
D = 1 =L
(a]a) ;pl Og[ﬁ[ (19)
P=a/Zl:ai
i=1
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4.3 KIGEEREIA

AR HUSGS I3 i (Clark 55, 2007) 11
T e M AR, B I ) R B )
2240 B (LI A T 1884 B ), i T
JUHEH0.38—2.5 um . SGIE/rHFF 10 nm, SCHBE
HUEBOE RS PR SO RN A size x size(SL50
KRN F64 x 64, 81 x 811100 x 100) L) %
P, BEADEE b RN T 0 3 BE ) e REAIL AR O 2
ARG 5 F0 O — BRI 26 4F), IF HoRE A BE iR A AR TT
FRT0.8MRTC I e A BT F B A ARG (1124
HOH BB H R BoT), S o BEIEdE b 1
PIE R e TR

B M AVIRIS 1995417 H 3R B Nevada/H Cu-
prite KA X A ECE . 2 G g K/ 100 % 100,
WA 224 P BE(0.4—2.5 um), 258/ FER DL
Ay PRSI 20 mA10 nm, SEE P d ] T 1884
BB, WBE1—2, 104—113, 148—167, 221—224
M T AFTE K 28 UM ORI e e B e 25 Bk o R ]
ATREM(Atmospheric Removal)(GaoF1Goetz, 1990)}
PRI BHR M SO T B Z 5, BRI R i
HEFFORT(Empirical Flat Field Optimized Reflectance
Transform)(Boardman, 1998)7J5 kL 8li/Mb ., L5
BB aEGE®R: BT, G JHE32, B: JHE
62)UnEl4M R :

[El4  Cupritedts X SE3G G K115

4.4 FLHERSHR

S PICE* . MVC-NMFH % i f K %10k 5
PIh1500k, 2404=0.05, B MR A HVCAR
4R %/ N e P(FCLS, Fully Constrained Least
Squares)(HeizfIChang, 2001)%] %70 M =F B 0] 4R

1k, SE A% NG IISADRAI B R, S i
HHHENL TN N2.68 GHz, WTF1 G, Smoci Bk
Y% FiMatlab 7.0 -5 1752
441  inTTEASE AR SEIE X EE

IZSER W H B X e [ s s A H S BT 6
Fofr o T 4 ORI 25 R, S0 AL EHR KN hy
64 x 64, WIISNR=30 dbiymiliMrs . 1. 2575
RAENICECNA . 5. 6. TRF6RE BT I IS H
FEARLPE I B Bz A7), S L gt . B S
JG. OFP IR SR i T A AR BR R T I (PCA
Ay, WL, BISTTLIE H, 7P c i BUR
K R B . MVC-NMF ., ICE. VCA,
OSP. N-FINDRFISGA, MEZEiafrhf ]l LIE H,
TESGTCECR RGBT, 6T A L CR
FIEARY . OSP. VCA. SGA. N-FINDR., MVC-
NMFHIICE.
442 XREFERFREMEXTEE

Vo AN vt i) REROE Ll DS DN
FER A5OSR R /N 64 x 64 BLLEIE, If:
TERALEE Fh 43 A IISNR=20 db, 30 db., 40 dbfll
50 dbil e . 2R3 450 BN T AE AR [R] Y £
L 6 B33k AR IRty o o 3 149 AF DL I R RS A
], 6. 7433 M 5 k20 dbA40 dbAYERL T,
6FP I LSRR oot 2k . NFR3 . El6. 7Rl DL
Fih: (EME /NI, 68 Tk I 45 SRR 2
AR H6Rh AR B 6 W 7 A5 ek F e 2K
YK MVC-NMF. ICE. VCA. OSP. N-FINDR
MISGA, MSEEBATHTE AT LAA H, 7E15 M AN [
FITEOLT , oFpm o HE B AR t i BRI R -
OSP. VCA. SGA. N-FINDR, MVC-NMFHIICE,
443 BBX/NRERBIEET

S Y H AR XS LR BRI NAS [R] B 64 76
PEPEE MR, SR A HUSGS Mt 4 i 4 4%
A ERBILENE , IF BRI INSNR=30 db
P TS . RS 6 B TERIER K /N K64 x 64
81 x 81, 100 x 10061k v T H L4k 5 ) AE AL
MR Kzt it . WRSHTLAR H, 6FhmCHEa
ARG R i B . MVC-NMF | ICE, VCA,
OSP. N-FINDRFISGA, MSZEGIzfTHE T LIE H,
FEFHR KRR B BT, 6 i oo #2 U I R0R

*Berman (2009 ) i HHALLR B A0 28 AR ICE SR ARG U7 5, %0 A e R AR, T T AL SR 5, SCrh S b ICE S AR B s

BARINZIr 5.
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= AKX . OSP, VCA. SGA. N-FINDR
MVC-NMFHIICE,
444 EEXEHEEGIIITLE
FIHAVD I 24271 P A A Cuprite i [X
AVIRIS = G EHGum To A H 9, s oo B B 45 1
AT LLSR U S G S Hi TR G 3% P2 504 i4E 47 LA (Winter,
1999a; Nascimento, 2006; Berman 4%, 2003; Miao
FIQi, 2007), 6FpumICHE IR IAIFA T T I A 45
METIR, MRTATLLIE Y, 6Fhim oo e s s H
TR G PR ARG BE s BRI . MVC-
NMF . ICE. N-FINDR, VCA. SGAFIOSP, M8
SCEGAEA TR FTLAE Y, 6Fh e R Rk
FIEMKK A . OSP, VCA, SGA. N-FINDR, MVC-

NMFAICE,

L SIC R O R ) S 6 5 R 5 ULl S 06 24
WA A, BRIV CATE 2k P2 HUR) 25 BUK B i I T
N-FINDRE %, {HiXx 5Nascimento(2006)3E 4 45
M5k B — 8t . VCASN-FINDR {5532
i B A 24 5% A FN-FINDR , [H0C% 0 34 5 fin
IR

WIS T AL B o R RCR A
(RS B2 oo B vk, O M EIAR A s
TR T R A R G OO oG, 1
EGA T ZEARE LA m G A R 5 — 2 iy A0 1 1 )
ARG, LR A R SEIA . EGAB LIS
R S AT B — S

Rl IHTHA R A LIERTEE
o N-FINDR VCA SGA 0SP ICE MVC-NMF
i TG
SAD SID SAD SID SAD SID SAD SID SAD SID SAD SID
4 3.908 0.013 3293 0.011 7.483 0.053 3.908 0013 5273 0033 2409  0.005
5 12142 0066 11434 0062 16111  0.161 13.778 0079 9747 0031 5450  0.032
6 9.674 0.066 9235 0.039 13466  0.111 7.945 0033 5308 0023 1614  0.002
7 11.034 0097 11769  0.089 9.009 0066 10881  0.096 6452 0033  3.022  0.008
Y 35,
3.0}
2.5}
*h ..
2.0}
2 TR RIS HIETRY sl
T2 1T )/ 1.0}
Uit TGE 0.5
N-FINDR VCA SGA OSP ICE  MVC-NMF =T
ol
4 4.9 05 09 04 5422 110.4 05
5 48 05 09 05 6899 120.7 -L0 . . . . . A ’ X
) 3 4 5 6 7 )
6 5.0 0.5 11 04 824 174.4 KRS« SZBR{E < N-FINDR VAC
+O0SP  #SGA ¢ICE  *MVC-NMF
7 53 05 11 06 941 273.5 I .
S SonBCh TR GRS R
R3 FIRERTREMERTEE
N-FINDR VCA SGA 0SP ICE MVC-NMF
e Ho/db
SAD SID SAD SID SAD SID SAD SID SAD SID SAD SID
20 7379 0037 3265 0012 10996 0081 7349 0035  3.054 0013 1.019  0.0009
30 3908 0013 3293 0011 7483 0053 3908 0013 3073 0010 2409  0.005
40 2621 0.005 2808 0005 4411 0011 2580 0.005 2071 0004 0575  0.0004
50 2910 0006  3.651 0012 2907 0006 2697  0.006 2403 0010 0422  0.0001
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T4 BINREEREA R RS XRIEITRE
. BT /s
[ L/ N-FINDR VCA SGA R j(‘)ISjP ICE MVC-NMF
20 5.1 05 0.8 0.4 563.4 120.1
30 49 0.5 0.9 0.4 542.2 110.4
40 4.8 0.9 0.8 0.4 541.6 117.5
50 6.3 0.6 0.8 0.4 588.5 126.1
0.9 0.8
0.8
0.7
0.6
E 0.5
0.4 i
0.3}
0.2/
0.1 "
0 50 100 150
B

0 50 100 150

200

0 50 100 150 200
() (d)
mm True Signature == == = N-FINDR + VCA SGA
== OSP +ICE o= v MVC-NMF
&6 fFM: L 20 dbi s e B SR
(@¥HICL; (WPRIG2; (eIC3; (d)ifions
0.9 0.55(
0.8 0.50+
0.7 0.45}
506 ¥0.40
N IR
=05 y 1X0.35
o4 0.30 i
03 0.25F 1\
0-2ﬁ 0.20
0.1 ; ; ; ; i ; ;
0 50 100 150 200 0 50 100 150 200
Bk
0.7] @)
0.6
0.5
£ |
> | 2
0.2
0.1 o1
0 . . ; " 0 : : : '
50 100 150 200 50 100 150 200
(c) (d)
mmm True Signature === = N-FINDR + VCA SGA
=== (OSP +ICE =+ == MVC-NMF

7 (EW 40 dbi e s 5

(¥uCl; (b)IC2; (o)4iyc3; (d)dmocs
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x5 BEBANREBRASEIETEE
{%jE/J\/ N-FINDR VCA SGA OSP ICE MVC-NMF
&t SAD SID SAD SID SAD SID SAD SID SAD SID SAD SID
64 x 64 3.908 0.013 3.293 0.011 7.483 0.053 3.908 0.013 3.273 0.012 2.409 0.005
81 x 81 2.511 0.005 1.286 0.001 2.632 0.006 2.526 0.005 1.147 0.001 0.347 0.0001
100 x 100 2.136 0.003 0.992 0.001 2.194 0.003 2.101 0.003 0.874 0.001 0.279 0.0001
Fx6 BEBKXNAERNEZXNEZEITHIE
B RIS 1T 8]/
EUR K/ MG TT
N-FINDR VCA SGA OSP ICE MVC-NMF
64 x 64 49 0.5 0.9 0.4 542.2 110.4
81 x 81 8.3 0.7 1.1 0.5 719 137.7
100 x 100 124 0.8 1.4 0.9 902 347
x1 EELEREEGIEIIT
-F ue ~ _ n
Fé—]{gﬁjE/J\/ N-FINDR VCA SGA OSpP ICE MVC-NMF
Lo SAD SID SAD SID SAD SID SAD SID SAD SID SAD SID
100 x 100 6.192 0.021 6.491 0.023 6.991 0.028 8.080 0.031 5.623 0.019 5.025 0.012
=8 A Cupritettt X & ik B G E & X1 TH E
v b
1%jE/J\/ *I}?E’TJE“ETJ/S
&t N-FINDR VCA SGA OSP ICE MVC-NMF
100 x 100 13.1 0.9 1.5 0.9 909 354
5 4k T BTG , WA SR

TRAARTCI B i A BTS2 B ok B o 281
1ot BRI, g s oA FH oG RS AL T
BRI AR SGE T T B il 28 o e PR B
Wi T HE IR AR« i oG R S B R T AR R
2, X E TR E R 6Fh TR BRI AT T Rk
(R REE ALY, WA T A LA T 2538

(1) D\ 3 0 & 45 SR (R oKG B 1% 0, o oo AR L
B T o oo R B A R I d e 45 R, MVC-
NMF 53 bt 7o 2 O 25 5K FE e i . SGATRIE Uk
JAN-FINDRBE L i et , H I oc 52 U 45 kS B2 A
JITREAR 5

QMNBHECR F &, wiocPU BB T oo
WA, JEHEVCAMOSPE M, SGAB L/ AN-
FINDRBVE MG, 8038 AR .

B, ERAF IR AR T o RS RS T —2
BPIEAERY, ARAE PR B A4S H BT,
XU AR BUEIE B T — e 2 LA T R

(D) a5 sEbr i A AR, AT LR FEIAR.
P T oCHE G, JEHJEVCA | OSPREHKEE FARXT
o= 0 O] i S = S e o) 1 TP (1 B S 7
N FHRR AR TC 3 ik RS B2 2R e, Wik #%
EGAB LI ot CHE I, M HUARICER AT 5 7T LAk
FEMVC-NMFRIE I TR G 18I0 5

(2) AT LK St G PR 1) B 5 SR SRy i e A vk
PRI IE , InPREE RISk, InVCARECRIR &
o U 25 SR O T A s T UM, TR
VCAB LS FBAE HICERMVC-NMFE 2 13 01 1
B, DARIFIPREGAT 1 i 2k AR S L B 44 w3 9 7T
RN GV e ST E T G
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G)TEIR G BITor i, AT LAA T e R 0 5k
JePRBUTIC, SR R BRI TR0 CAA I o i A
PR 4 5 P T P AR BR A 1 e /s — e A R B 2
T ARG L RN B AR, AR S C A A
AL B TR0 U S CAA A AL SRR A, SR T
DA — 2 P i SR SR oGP A SR AT e

F OB BMVC-NMFH &4 # Qi Hairong#k
BRI MVC-NMER % R A7, VARICER &4k
#Berman# X AICEH & Loy 355,
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